Neuroprotection by two polyphenols following excitotoxicity and experimental ischemia.
نویسندگان
چکیده
Brain ischemia induces neuronal loss which is caused in part by excitotoxicity and free radical formation. Here, we report that mangiferin and morin, two antioxidant polyphenols, are neuroprotective in both in vitro and in vivo models of ischemia. Cell death caused by glutamate in neuronal cultures was decreased in the presence of submicromolar concentrations of mangiferin or morin which in turn attenuated receptor-mediated calcium influx, oxidative stress as well as apoptosis. In addition, both antioxidants diminished the generation of free radicals and neuronal loss in the hippocampal CA1 region due to transient forebrain ischemia in rats when administered after the insult. Importantly, neuroprotection by these antioxidants was functionally relevant since treated-ischemic rats performed significantly better in three hippocampal-dependent behavioral tests. Together, these results indicate that mangiferin and morin have potent neuroprotectant activity which may be of therapeutic value for the treatment of acute neuronal damage and disability.
منابع مشابه
Neuroprotective effects of crocin on the histopathological alterations following brain ischemia-reperfusion injury in rat
Objective(s): Some histopathological alterations take place in the ischemic regions following brain ischemia. Recent studies have demonstrated some neuroprotective roles of crocin in different models of experimental cerebral ischemia. Here, we investigated the probable neuroprotective effects of crocin on the brain infarction and histopathological changes after transient model of focal cerebral...
متن کاملDifferential Neuroprotective Activity of Two Different Grape Seed Extracts
Glutamate excitotoxicity is one of the major events that takes place during various neurotoxic injuries such as brain ischemia. We prepared grape seed extracts, from two different varieties, containing high amounts of polyphenols but little resveratrol. Their neuroprotective effects were investigated using primary culture of neonatal mouse hippocampal neurons treated with an excitotoxic concent...
متن کاملPrevention of in vivo excitotoxicity by a family of trialkylglycines, a novel class of neuroprotectants.
Excitotoxicity has been implicated in the etiology of ischemic stroke and chronic neurodegenerative disorders. Hence, the development of novel neuroprotectant molecules that ameliorate excitotoxic brain damage is vigorously pursued. We used a neuroprotection-based cellular assay to screen a synthetic combinatorial library of N-alkylglycine trimers. Two compounds (6-1-2 and 6-1-10) that efficien...
متن کاملPost-ischemic diazepam does not reduce hippocampal CA1 injury and does not improve hypothermic neuroprotection after forebrain ischemia in gerbils.
The hippocampal CA1 sector is especially vulnerable to brief forebrain ischemia. Excitotoxicity is widely thought to contribute to this cell death. Accordingly, drugs that presumably counteract excitotoxicity, such as GABAergic agonists, have been repeatedly tested and found to reduce CA1 cell loss. Post-ischemic diazepam reduces CA1 injury. However, diazepam also causes hypothermia, which by i...
متن کاملNeuronal networks provide rapid neuroprotection against spreading toxicity
Acute secondary neuronal cell death, as seen in neurodegenerative disease, cerebral ischemia (stroke) and traumatic brain injury (TBI), drives spreading neurotoxicity into surrounding, undamaged, brain areas. This spreading toxicity occurs via two mechanisms, synaptic toxicity through hyperactivity, and excitotoxicity following the accumulation of extracellular glutamate. To date, there are no ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurobiology of disease
دوره 23 2 شماره
صفحات -
تاریخ انتشار 2006